ECE 560: EMB. SYS. ARCHITECTURES
PROJECT 1 REPORT

Arpad Voros

Unity ID: aavoros

INTRODUCTION

In this project, we are exploring how to recover idle time using a real time operating system. This is important for
the same reason why interrupts exist: we don’t want to continuously poll a system when the MCU can be performing
some other function. For systems that require waiting time, it would be ideal to recover idle time during this waiting
period.

Project 1 decides to read data from an SD Card, which communicates over a SPI interface. The SD Card follows a
specific protocol when being read and written to. After sending a read block command, the SD Card gathers itself and
responds with a falling pulse on the SPI channel to indicate it’s ready to be read followed by the corresponding data
block. During this waiting period, we can create use osDelay from RTOS to wait for a certain amount of ‘ticks’ (occurring
every ms) to pass to perform other operations before returning to the thread. However, osDelay is inconsistent with
precision timing as the number of ‘ticks’ independently occur to the time at which osDelay is called. Meaning, osDelay(2)
returns to the thread anywhere between 1ms —2ms, osDelay(3) is 3ms — 4ms, so on and so forth. For more precise
delays, we can utilize the periodic interrupt timer (PIT) to count down from a value and generate an interrupt when its
done. With this precision, we can block the thread and recover idle time and significantly more accurate rate.

ANALYZE IDLE THREAD TIMING

+ =

g -
~
»
£}
v

[~
[T
[

©
&

Ready [2010 sampies at 100 iz | 2020-10-12 10:43:16.056X: 807.2 U Idle Period: 330 ns / 3.0303 MHz / 51.515 %
Idle Pulse width: 170 n:

Idle
DBG_6
SD_Init (DBG_5)
pf_read (DBG_4)
SD_Write (DBG_3)
SD_Read (DBG_2)
SPI_RW (DBG_1)
- SPI-DI-To uSD
Select
Clock
Data
- SPI-DO-From uSD
Select
Clock

Data X

=
Q
)

=
&l -
=

®
9
o
@

=}
~

=
o

*
9
=]
@

=
]
w

%
=
o
o

1=
(=}
~

3
XXX XK <

=
o
w

%
=)
=}
=)

>

My Project

Discovery?2
SN:210321AA23AE
2020-10-18 10:43:16.056 | - |

X - 1ug -0.8 us -0.6 us -0.4 us -0.2 us 307.5432 us + 0.2 us 0.4 us 0.6 us 0.8us lus

- How much time does it take for the loop in osRtxldleThread to execute one iteration?
o Since DEBUG_TOGGLE is used (plugged into DIO10, as seen in the figure above), every time the loop repeats the
channel is toggled, meaning one half period of our signal is the time for each loop. In this case, it fluctuated around
160-180ns, being highly consistent at 170ns.

- How many iterations would happen in one millisecond if only the idle thread ran, and nothing else?
o 1ms/170ns=(1*10"-3)/(170* 10 ~-9) = around 5882 times per ms

ANALYZE SD TIMING

+* .- |, T. < >
Name Pn T Ready 2048 sX: -1 us: 1 Mz | 2020-10-15 10:54:50.627 x EEe i

Tdie DIO 10p4

D Gy oio o 'SD Ctrl Busy Pulse width: 310 u

SD_Init (DBG_5) *DI0 8 X

pf_read (DBG_4) DIo 7h¢ E

SD_Write (DBG_3) DI ¢

SD_Read (DBG_2) TE X I T LR T A TR A LT AT T A AU AR

SPI_RW (DBG_1) *DI0 8 X :

- SPI-DI-To uSD {[T T T T T T T T ITTT InFFIhFFIhFFInFFInFFIhFFIRFF ThFRRFF [nFFIRFF IFFIRFFIRFF ThFFhFFRFF [hFFIhFFIRFFT

Select X !

Clock *DIO 0 X

Data DIO 24]

- SPI-DO-From uSD ——— T TTTTITTTITT hc7hea[InBshBoh3AnBF] [hoo[hodhoo]hodhodhoo[h00hodhoohodhodhoo

Select X :

Clock *pI0 0 X

Data el X TV VRN IMER TOLTRRATL I

My Project
Discovery2
SN:210321AA23AE
2020-10-18 10:54:50.627 - |

X ‘v -0.22 ms -0.02 mgy 0.18 ms. 0.38 ms 0.58 ms 0.78 ms 0.98 ms. 1.18 ms 1.38 ms 1.58 ms 1.78 ms

After adding the SD Ctrl Busy channel visible on the AD2, we observe that the pulse switches erratically between 300 us
and ~460 us without any sort of idle time consideration.

- What are the values of the statistics reported on the display? What do they indicate? How do they relate to the length of
SD Ctlr Busy?
o Blocks: 1159, Total Time: 11554 -> These indicate the time it took to read as well as the number of blocks read
from the SD card
o Idle time and loops are both 0 since we are not blocking on this thread.

ANALYZE OSDELAY TIMING

- What range of delay times do you see, and how do they compare with the requested delay?
o The delay ranges from ~300 — 1000 us. The higher end of the value occurs occurring because the SD card is still
reading (minimum being ~300 us), which means osDelay(1) return anywhere between 0 ms — 0.3 ms, but the SD
card still keeps busy. The higher end of this occurs because osDelay(1)’s upper value of return is 1 ms.

File Control View Window 5

H il b B Mode: Repeated ~ Trigger: Normal N Pulse Protocol - Position: \854.6 us v|SampIe5: ‘Default v| &
ML un Buffer: < Source: | Digital ~|mnputs: |100MHz DIO 0..15 Base: [200 us/div ~|Rate: [1MHz vl =
+ .= N.T. < R
Name pin T Ready X: -1 USD Cerl Busy Position: 0.000329s Value: L L @ &
Tde D10 100 *3
PG [Bsy) oio o} SD Ctrl Busy Pulse width: 518
SD_Init (DBG_5) *DI0 8 X
pf_read (DBG_4) ol X
SD_Write (DBG_3) e X
SD_Read (DBG_2) E X TR AR R RRAL TR
SPI_RW (DBG_1) *DI0 8 X
- SPLDI-To uSD S hFF | _JheF | [neF | InFF | InfF | Jner | JnEF | [eF | Jner | Jner] [PhFE
Select X
Clock *DI0 0 X LA AL ORI AL OLACAORRCE RN AR AR
Data DIO 24]
- SPI-DO-From uSD —QFI} heo [Th3B [[nBo [Tha1 [ha6 [ThzF T |h39 [TheD [|73 [[ha3] [2hAE
Select X
Clock *DI0 0 X A O A AT A TR T IO
Data el X I LT AL R AL Y Y
My Project
Discovery?2
SN:210321AA23AE
2020-10-18 11:01:12.553 |
X~ -0.15ms ‘.05 ms 0.25ms 0.45 ms 0.65 ms 0.85ms 1.05 ms 1.25ms 1.45 ms 1.65 ms 1.85ms
osDelay(1)
- What are the values of the statistics reported on the LCD? What is the fraction of time the idle thread executes? What do
they indicate has changed from the previous case?
o Blocks Read: 1159, Total Time: 11870 -> we can notice that the average time takes a little bit longer than with no
osDelay, since osDelay(1) blocks (on average) slightly higher than the average SD card read time (~300 us — ~460us)
o Idle loops: ~3494000 (variable), Idle time: 594 -> these non-zero values indicate that we recovered idle time while
waiting for the reading operation.
o The fraction of the time the idle thread executes lasts approximately the same amount as the SD Ctrl Busy thread,
~300us—1ms
File Control View Window I
N Fir]) a Mode: Repeated ~ Trigger: Normal 2 Pulse Protocol _ Position: |1.905 ms ~|samples: [Default][
e an Buffer: |10 :] + Source: Digital ~|Inputs: | 100MHz DIO 0..15 Base: |500 us/div “|Rate: [400kHz | =
+ .- _N.T. < R
Name Pin T Ready Name: SCX: -2.5 US Fosition: 0.000184s Value: 1 R
Idle X
DI CLsy oro_of 'SD Cirl Busy Pulse width: 1312 m:
SD_Init (DBG_S) *DIo 8 X
pf_read (DBG_4) X
SD_Write (DBG_3) e X
SD_Read (DBG_2) TE X I AL
SPL_RW (DBG_1) *DI0 8 X
- SPI-DI-To uSD {_ThFF [JheF [hFAhFE [hFAhFF [2 hFo
Select X
Clock *DI0 0 X T T T
Data DIO 2p4
- SPI-DO-From uSD {Thac]_Jno2] Jne4] [h87[7 ho
Select X
Clock *DI0 0 X LT R MR RN [T
Data DIO 14 WU T Ty
My Project
Discovery2
SN:210321AA23AE
2020-10-18 11:04:22.449 |
X - -0.6 ms -0.1ms ‘ 0.4 ms 0.91 ms 14 ms 1.9 ms 24 ms 2.91ms 3.4 ms 3.91ms 4.4 ms

osDelay(2)

- What are the values of the statistics reported on the LCD? What is the fraction of time the idle thread executes? What do

they indicate has changed from the previous case?
o 1-1.99 ms now, since osDelay(2) is used
o Blocks Read: 1159, Total Time: 12954 -> significantly more time is used because of the larger delay
o Idle loops: ~10461000, Idle time: 1778 -> recovered more idle time, obviously, due to the larger osDelay
o There is on average 3 times the number of idle time/loops as previously.

ECE 560: EXPLAIN PRECISION DELAY SOFTWARE DESIGN AND ANALYZE TIMING

- Provide logic analyzer screenshots showing overlapping delays which prove that your system actually works.

+* .= T

Ready 2048 samples at 2 MHz | 2020-10-19 19:44:16.335 - 9 183
Idle
SD Ctrl Busy
SD_Init (DBG_S)
pf_read (DBG_4)
SD_Write (DBG_3)
SD_Read (DBG_2)
SPI_RW (DBG_1)
- SPI-DI-To uSD
Select
Clock
Data
- SPI-DO-From usD
Select
Clock

Data DIO 1p4

92

5|°H
=

o5

o
KKK OO 4| A

=2
]
@

o

H
|y

2
S}
-

g
S

*
=)
[S]
o

=
(s]
Y]

=}
S}
%)

%
=)
[S]
)

=

X: -291.186 us

My Project
Discovery?2
SN:210321AA23AE
2020-10-19 19:44:16.335

X |- -300 us -200 us -100 us 0 u‘ 100 us 200 us 300 us 400 us 500 us 600 us 700 us

My precision delay implementation, using the delay values provided of 28 us, 10 us, 86 us, and 179 us

- How much time overhead does your precision delay mechanism add to the requested delay?

o The pulse widths above are 98us for 28us, 72us for 10us, 125us for 86us, and 202us for 179us, which results in an
average value of 48.5us delay. However, with larger delays, this number improves slightly.

o Thetop signal (DIO 8, DBG_5) is set when PIT_Start is called and is reset upon entering the interrupt for PIT-
>CHANNEL[O]. This was used for debugging purposes, as well as a visual to see how long my PIT timers last. In the
figure above, the first pulse is exactly 10us (since the first thread to execute here is the one using DBG_2, thread
T2 = 10us ideal delay.

- Does the overhead vary with the number of times a precision delay is interrupted by another channel? If so, explain why.

o Yes, but only in some circumstances. After fiddling around, | noticed when values reach sub average-overhead
levels (i.e. below 50us) and multiple of them are called in a row, then the overhead varies significantly higher than
the average overhead value. In addition, the first delay that is called takes approximately 10-20us to complete than

the rest:

o= o LT <
Nam Pin T
Idle DIO 10p4
SD Ctrl Busy DIO P4
SD_Init (DBG_5) pio 8 X | 1]
pf_read (DBG_4) J—i
SD_Write (DBG_3) DIO 64
SD_Read (DBG_2) e X | |
SPI_RW (DBG_1) Do 4 X |
- SPI-DI-To uSD X2 -199.322 u:
Select “DIO 3¢
Clock *pI0 0 X
Data DIO 24
- SPI-DO-From uSD
Select X
Clock *DI0 0 X
Data X
My Project
Discovery2
SN:210321AA23AE
2020-10-19 19:58:52.879 | |
X - -0.24 ms -0.04 ms‘ 0.16 ms 0.36 ms 0.56 ms 0.76 ms 0.96 ms 1.16 ms 1.36 ms 1.56 ms 1.76 ms
Here, we see the following delays (larger than the test one), showing the set and the real value:
DIO Channel Set Delay Actual Delay Order Called Difference
DIO 4 400us 440us 3 40us
DIO 5 670us 693us 4 23us
DIO 6 150us 218us 1 68us
DIO7 200us 254us 2 54us

We make two evident observations with this algorithm | made:

1. The order being called corresponds to the length of the delay. Since the shortest requested delay returns first, it calls
osDelay(10) first, meaning on average it will come out of osDelay sooner than its thread counterparts
2. The overhead of the delays are significantly off at the beginning and get increasingly accurate as time goes on.

Here, the average overhead was 46.5us, so a 2 us improvement from last time. Not much, however, you can see a
significant improvement with the percentage of idle time recovered.

In the figure directly above, | showed larger delays to show the delay corresponding between the moment PIT_Start is
called versus when the idle thread begins running. | realised that for the first call of PIT_Start (shown by DIO 8), there is a
consistent 50us delay before the idle thread starts running. This is precisely why in the shorter delays (shown in the
previous figure), there is absolutely no idle time recovered for the first delays of 10 & 28us. Once this 50us passes, then
each subsequent PIT_Start will be followed by an idle thread in 20us. This can be shown in the figure below:

]2043 samples at 1 MHz | 2020-10-19 19:58:52.879

]

First line representing the first delay of 50us before idling, then subsequently 20us each time

- How consistent are the time delays? Use your logic analyzer or oscilloscope to find the minimum and maximum timing
errors.
o Though there are varying delays, the delays themselves are consistent. They do not oscillate, grow, decrease, etc.,
but stay consistent down to 0.2 us. This slight fluctuation, I'm assuming, comes from the PIT interrupt itself.

| tried hard to decrease the average overhead, but with no avail. Due to this large overhead, it’s safe to say that my
algorithm is not optimal. But | did take into consideration the following:

1. If multiple threads end on the same tick of PIT (I know it’s rare), | set both of their osFlags immediately rather than one
after another
2. Some function delays can be calculated, so there is one instance where | consider the time it takes to operate.

It also took a significant amount of time to return from the IRQ Handler to the thread with the raised flag. If that had
happened earlier, the DEBUG_STOP within each of those threads could have potentially ended earlier. That is why |
included DIO 8, so we can see when the IRQ Handler is actually entered and exited and can observe much more precise
delays. The RTOS with it’s flag checking and thread returning is adding to the delay upon return.

The functions used, with descriptions, are:

precDelay: the function to be called when wanting a precision delay
PIT_Init: initialize the first instance of each virtual PIT channel
PIT_Add: adds a new instance of the timer for a specified channel
PIT_Set: sets the value of the PIT (loads value)

PIT_Start: enables the counter

PIT_Stop: disables the counter

PIT_Handover: hands over the timer to the next virtual channel
PIT_IRQHandler: the IRQ handler for the PIT

©® N o Un ks WD

Some important globals used include:

1. virtualChannel vcs[4]: struct array of virtualChannel for each channel, with the following properties
a. thread_flag —the flag to be set, once this channel finishes
b. thread_id —the ID of the thread to return to, once this channel finishes
c. delay_remaining —the amount of delay (in PIT increments) remaining for this virtual channel before returning to its
thread
2. pending: an unsigned char which sets values 1, 2, 4, 8 (4 LSB bits) to 1 if the corresponding channel is pending its return.
Meaning, if pending = 0b0001, then upon entering the IRQ handler, the first channel, channel 0, will set its corresponding
osFlag. If there are multiple pending bits, like 0b0110, then channels 1 and 2 will both set their osFlags once the timer
expires.
3. initialized: an unsigned char, not particularly useful. But each time that precDelay is called, it checks to see if PIT_Init has
been called. If so, it skips PIT_Init and immediately goes to add the timer using PIT_Add.

A brief idea on how the flow works:

precDelay <

initialized?

no-» PIT_Init: set up PIT, update vcs

yes

enter PIT_Add

l

Call PIT_Stop

any
threads

fetch current value of

pending?

PIT

change the pending

update all
.delay_r ining in <

-~

thread to the newly
added channel

Vs arguments
accordingly

A 4

set the new delay
using PIT_Set

new delay

only change the new
channels

¥

Call PIT_Start [

A 4

return to thread, (o
be blocked by the
next ling)

.delay_remaining
property

no

Adding a channel

The only aspect to elaborate on, is when | say “update all
.delay_remaining vcs values accordingly” | mean there |
consider the current value of the PIT, the delay being
added, etc.

The .delay_remaining value simply holds the value which
the PIT should be loaded with when it’s that channels
time to run. Example:

Channel 0 is initialized with 50us

PIT begins counting down

Channel 1 is initialized to 30us

The PIT has counted to 2us, so its current value is
48us. Channel 1 needs to be returned to sooner, so:
pending = 0b0001 -> 0b0010

vcs[0].delay_rem = 50us -> (48 — 30) = 18us
vcs[1].delay_rem = (not set) -> 30us

After 30us when the IRQ Handler is called, it sees that
the pending channel is 0b0010 = channel 1, so it sets
the flags for channel 1 and enters PIT_Handover
PIT_Handover (seen below) finds the shortest delay,
which in this case is only 18us from channel 0

The delay is set to 18us and the timer starts again
After 18us, channel 0 would have experienced a ‘time
out’ by 2us (beginning) + 30us (channel 1 waiting) +
18us (calculated delay remaining) for a total of 50us,
which is what we wanted

PIT_Handover

Briefly described in the paragraph above, as well as this
simple flowchart

PIT_IRQHandler

h A

set flags from vcs
according to which
channels are pending

update all .delay_remaining values of vcs o
accomodate the new delay

PIT_Handover
new channel to

(i.e. ves[chnl]. delay_remaining -= lowest_delay) run?
to take info account the delay currently being run
h 4 no
Call PIT_Stop x yes
Call PIT_Set
v set the pending flags
" to the channels with
remove all pending T
delays, as they have chortest delay, if any
been dealt with [
v h 4
v - return to
loop through Call PIT_Start IRQ_Handler
channels, find the
reset pending =0 > shortest
.delay_remaining, if
any

Listings/Screenshots of the program:

130 Fwvoid PIT_Add(uint32_t wvirtual_channel, uint32_t delav){

131 uint3z_t pic_val:

132

133 // stop the timer for gquick calculation

134 PIT Stop():

135 // fetch the current walue in the PIT

136 pit_val = PIT->CHANNEL[O].CVRAL:

137

138 #/f if there is currently a PIT running

139 [if (pending) {

l&OE // if the delay needs precedence, then load delay into PIT and update .delay remaining

141 [] if (pit_wal > delay && pit_wal) {

142 /{ update .delay_remaining of all CURRENT waiting threads (aka not the one being added)

143 // Easter than for loop

144 if (ves[T1_CHNL].delay remaining) wvcs[T1_CHNL].delay_remaining = (pending & T1_MASK) ? pit_wval - delay : vcs[T1_CHNL].delay remaining + pit_wval - delay:
145 if (ves[T2_CHNL].delay_remaining) wos[T2_CHNL].delay_remaining = (pending & T2_MASK) ? pic_wval - delay ! vcs[T2_CHNL].delay remaining + pit_wval - delavy;
146 if (ves[T3 CHNL].delay remaining) vcs[T3 CHNL].delay remaining = (pending & T3 _MASK) ? pit_val - delay : vcs[T3_CHNL].delay remaining + pit_wval - delay;
147 if (veos[T4_CHNL].delay remaining) wveos([T4_CHNL].delay_remaining = (pending & T4_MASK) ? pit_wval - delay : vcs[T4_CHNL].delay remaining + pit_wval - delay:
148 J{ if there isg a delay remaining, then update appropriately whether or not the thread was the
14% // first pending or whether there was still delay time

150

151 // set this channels .delay_ remaining

152 ves[virtual channel].delay remaining = delay;

153

154 // set pending channel

155 HARD SET THREAD(virtual channel):

156 //{ set timer to delay

157 PIT_Set (delay);

158 // PIT->CHANNEL[O] .LD% PIT_LOVAL TSV (delay):

159 } else if (pit_val delay) {

160 // rare, but if the delays are the egqual

161 SOFT_SET THREAD(virtual channel);

lez /{ set this channels .delay_remaining

163 ves[virtual_channel].delay_remaining = delay - pic_val;

164 PIT_Set (pit_wal};

165 } else { vcs([virtual_channel].delay_remaining = delay - pit_wval; PIT_Set(pit_wval):; }

166 } else {

167 // if there is NO PIT running

168 [/ set pending channel

169 HARD_SET_THREAD(virtual_channel);

170 // set this channels .delay remaining

171 vce[virtual channel].delay remaining = delav;

172 // s=t timer to delay

173 PIT_Set(delay):

174 }

180 Hwoid PIT Handover (void) {

181 uint32_t lowest_delay = 0;
182 //unsigned char lowest idx = NUM _CHANNELS + 1;
183
184 PIT Stop():
185
186 /{ remove delay remaining
187 if (pending & Tl MASK) wvecs[T1l _CHNL].delay remaining = 0;
188 if (pending & T2 _MASK) vcs[T2_CHNL].delay remaining =
189 if (pending & T3 MASK) wcs[T3_CHNL].delay remaining =
180 if (pending & T4 MASK) vos[T4 _CHNL].delay remaining =
151
192 // reset pending
153 pending = 0;
154
195 // find the minimum delay
186] for (int i = 0; i < NUM CHANNELS; i++) {
187 if (lowest_delay == 0 && vecs[i].delay remaining) lowest_delay = vcs[i].delay remaining;
158 [if (vecs[i].delay remaining && lowest_delay > ves[i].delay remaining) {
159 lowest_delay = wves[i].delay remaining;
200 fflowest_idx = i;
201 HARD SET THRERD(i):
202 } else if (lowest_delay && lowest_delay == wvcs[i].delay remaining) {
203 SOFT_SET THREAD(i):
204 /flowest_idx = i;
205 - }
206 ¥
207 -
208 // update all delays accordingly
209 if (ves[T1_CHNL].delay remaining && ! (pending & T1 MASK)) wvcs[T1_CHNL].delay remaining -= lowest_delay:
210 if (ves[T2_CHNL] .delay remaining && ! (pending & T2 MASK)) vos[T2_CHNL].delay remaining -= lowest delay;
211 if (vecs[T3_CHNL] .delay remaining && ! (pending & T3 _MASK)) ves[T3_CHNL].delay remaining —= lowest delay:
212 if (vcs[T4_CHNL].delay remaining £& ! (pending & T4 _MASK)) wvcos[T4_CHNL].delay remaining -= lowest_delay:
213
4 if (pending && lowest delay) { PIT Set (lowest delay - HBNDCOWVER OFFSET); PIT Start():; }
i | o e o
216 -

Here, you can see all the aspects described above in the flowcharts. A couple things to note

- Multiple macros to consider, like the TX_MASK to check the pending channel bits

- SOFT_SET_THREAD(x) and HARD_SET_THREAD(x) are macros to set pending, hard-set meaning using an AND operation so
only 1 bit is pending, and soft-set meaning using an OR operation so it adds a pending thread (meaning it ends at the same
instance, which is very unlikely)

- HANDOVER_OFFSET is a macro that equals 8.5us, as PIT_Handover takes 8.5us to complete. So | subtract it from the

PIT_Set call
246 [[Jvoid PIT_IRQHandler (void) {
247
248 //clear pending IRQ
249 NVIC ClearPendingIRQ(PIT_IRQm);
250
251 // check to see which channel triggered interrupt
252 [[] if (PIT->CHANNEL[0O].TFLG & PIT_TFLG_TIF MASE) {
253 DEBUG_STOP (DBG_5);
254 // clear status flag for timer channel 0O
255 PIT->CHANNEL[0] .TFLG &= PIT_TFLG TIF_ MASK:
256 // Do ISR work
257
258
259 ff
260 //PIT->CHANNEL[O] .CVAL;
261 if (T1_MASK & pending) osThreadFlagsSet(vcs[T1_CHNL].thread id, vcs[Tl_CHNL].thread flag):
262 if (T2_MASK & pending) osThreadFlagsSet(vcs[T2_CHNL].thread id, vcs[T2_CHNL].thread flag):
263 if (T3_MASK & pending) osThreadFlagsSet(vcs[T3_CHNL].thread id, ves[T3_CHNL].thread flag):
264 if (T4 MASK & pending) osThreadFlagsSet(vcs[T4 CHNL].thread id, wvcs[T4 CHNL].thread flag):
265
266 PIT_Handover():
267 //osThreadFlagsSet (vcs [T3_CHWL].thread_id, vcs[T3_CHNL].thread flag):;
268 £/
269
270 - }
271 [if (PIT->CHANNEL[1].TFLG & PIT_TFLG_TIF MASE) {
272 /{ clear status flag for timer channel 1
273 PIT->CHANNEL[1].TFLG &= PIT_TFLG TIF_ MASK;
274 // Do ISR work
25 -)
276 | }

The IRQ Handler is very straight forward, it sets all the osFlags if they are pending, and then hands over the PIT to the
next pending channel. PIT_Start and PIT_Stop have not been altered. PIT_Set is simply the following:

217 [Hwvoid PIT Set(uint32 t delay) |

218 S 32t the delay wvalus
218 PIT->CHMNNEL[O] .LDVAL = PIT LDVAL TSV (delay):
220 }

Macros in timers.h

=
1]
1 12 HARD SET THREAD (idx) (pending = (1 << idx))
z 12 SOFT_SET THRERD (idx) (pending |[= (1 << idx))
3 12 NUM CHRMNELS 4
4
5 | #define MICROS TO PIT(us) ((24 * us) - 1)
[
7 | #define T1_MASK 1
8 #define T2 MASK 2
] Fdefine T3 MASK 4
0 | #define T4 MASK &
1|
StdEf ne Tl CHNL 0
3 | #define T2 CHNL 1
#define T3 _CHNL 2
#define T4 CHNL 3
12 Tl FLAG 16
12 T2 FLAG 32
e T3_FLAG 64
e T4 FLAG 128

H/*#define T1 uS 28
#define T2 us 10
#define T3_uS &6

#define T4 uS 179%/

#define T1 uS 400

#define T2 _uS &70
#define T3 _uS 150
#define T4 uS 200
#define OFFSET O

(i1 :'ll

#defin HANDOVER OFFSET 206

Htypedef struct virtuwalChannel t {
uint32 t thread flag:
osThreadld t thread id;
uint3Z t delay remaining;

F} wirtualChannel;

£

[Vs B = R VI Y Ry U O R S V' ¢ I . VI o 3 Y S LT I S T Y = RS [VI Y Sy L Y

precDelay and PIT_lInit:

a5

Sg

T

S8

a9
100
101
102
103
104
105
106
107
108
105
110
111
112
113
114
115
116
117
118
115
120
121
122
123
124
125
126
127
128

1T Am

volid precDelay(uint32 t wvirtual channel, uwint32 t us, osThreadId t tid, uint32_t flag){
E if (!{ipitialized & (1 << wvirtual channel})) {
PIT Init(virtual channel, MICROS TC PIT (u=), tid, flag):
initialized |= (1l << wvirtual_ channel):

F o}
S/ add to our PIT w 4 virtual channels
PIT Add(wirtual channel, MICROS TCO PIT (us));
ffBIT_Start();

}

Elwoid PIT Init(uint32_t wvirtual channel, uint32 t delay, osThreadId t tid, uint32 t flag) |
//{ Enable clock to PIT module
SIM->5CGCe |= S5IM SCGCe PIT MASE:

S/ Enable module, freeze timers in debug mode
PIT->MCR &= ~PIT MCR MDIS MASK:
PIT->MCR |= PIT MCR FRZ MASK;

S/ set return thread & flag to set for wvirtual channel
ves [virtual channel].thread id = tid;

ves [virtual channel].thread flag = flag;

vcs[virtual channel].delay remaining = delay:

S/ Ho chaining
PIT->CHANMNEL[O] .TCTRL &= PIT TCTRL CHN MAZE;

S/ Generate interrupts
PIT->CHANNEL[O] .TCTRL |= PIT_TCTRL TIE MASK:

fS* Enable Interrupts */

NVIC SetPriority(PIT IRQn, 128); // O, &4, 128
HVIC ClearPendingIRQ(PIT IRQm);

NVIC EnableIRQ(PIT IRQn);

a
en
[

H

[
[fa)
%]

Fairly straight forward and similar to what’s given, only difference is that precDelay check’s if it has been initialized (so
doesn’t have to do it every time). PIT_Init initializes the PIT timer on the first call (of each virtual channel) as well as
initializes our vcs array of virtual channels. The struct can be seen in the previous figure.

USE PRECISION DELAY FOR SD READ COMMAND

Using a delay of 420us, we can see in the figure below that a delay of 450us is made. 30us off, but recovered idle time of
roughly 412us. During this run, the number switched between 450us and the max for SD reading of 460us.

| could set the delay higher, but it’s a trade off of wanting more idle time versus reading faster from the SD card

What are the values of the statistics reported on the LCD? What is the fraction of time the idle thread executes? What do
the statistics indicate has changed from the previous case?
o Blocks: 1159, Total Time: 11650 -> slightly lower time than last time
o Loops ~2845000 Idle Time: 483 -> lower loops and idle time than osDelay(1) since we are using a more precising
timing method than 0.3 - 1ms

oS o LT < 5
Nam Pn T Ready X: -500 NS 5D Ctrl Busy Fosition: 0.00007653 Value: 1 s EE|e &
1de X 1 |
sochilbusy I : SD Ctrl Busy Pulse width: 449.5
SD_Init (DBG_5) DIo 8 X
& o -—
SD_Write (DBG_3) DIO ohd i
SD_Read (DBG_2) IJE X g
SPI_RW (DBG_1) DIO 4 X
- SPI-DI-To uSD —hoi hFF_[hFF [hFF hFF hFF [hFF hFF JhFF [hFF [hFF JhFF [hFF ThFF JhFF [hFF [hFF JhFF [hFF [hFF
Select X
Clock *DI0 0 X I T T T
Data X
- SPI-DO-From uSD — A [h60 [n04 [h00 185 [160 [niF hED [n02 [nAO [h02 [n00 [hG5 hEF [hD8 160 [h00 [n00 [h65 [h6
Select X
Clock *DI0 0 X % I R T AR
Data CICH X I LI OO RN RO AR IOV SOOI DO AR A RO 00
My Project
Discovery2
SN:210321AA23AE
2020-10-19 21:26:12.590 | |
X ‘v -52.1us A 479us 147.9 us 2479 us 347.9 us 447.9 us 547.9 us 647.9 us 747.9 us 847.9 us 947.9 us

| would say that despite the multiple channels implementation not being perfect below delays of 50us (as no idle time is
recovered), calling a single channel of lengthier delays 50us — 1000us) is impressive and precise. Especially when
considering how drastically osDelay was jumping around every time it was called.

RETROSPECTIVE

e | honestly enjoyed this project, but (and | know we are in a time crunch this semester) | wish | had more time on it. | am writing
this tonight, the day it’s due, and | had 2 tests and 2 projects due today. This past week has been extremely difficult, and maybe
spending a more time on the algorithm and trying new approaches, | can see places to optimize. During my own development
process, especially with embedded systems, its imperative that | sit down and draw/sketch/pseudo-code out my ideas before
jumping in. Normally with programming it’s straight forward, but with this system there is a lot of small technical things to
consider, and when left unchecked, can lead you down a bad path & spaghetti code.

e The IDE has so far been very useful with debugging, the only particular ‘bug’ | found entering breakpoints on lines which were
not going to occur. For example, if | had an if statement, and set a breakpoint in the else, then it would sometimes stop in the
else (VISUALLY on that line), but when observing the disassembly, it’s not actually in that block. This is kind of expected but
would save time if it didn’t do that.

